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Abstract. Two-dimensional invasion percolation simulations into regular fractals are per- 
formed to study the dependence of the invading cluster fractal dimension on the geometry 
of the medium. The fractal dimension of the invading cluster D. neither depends on the 
average coordination number of the network, nor on the links of the backbone. We find 
that Dj only depends on the fractal dimension of the backbone of the medium Dbb and 
varies linearly witLit. 

Among the most important models for simulating fluid displacement in porous media 
we can mention the Eden (1961), diffusion limited aggregation (Witten and Sander 
.1983) and invasion percolation (Wilkinson and Willemsen 1983) models. The diffusion 
limited aggregation (DLA) model is used for emulating systems in the viscous regime. 
The other two refer to the capillary regime. Using the DLA model and invasion 
percolation, fractal growth patterns are observed on an Euclidean support. Neverthe- 
less,~these models can be applied directly on mediawhich are not necessarily Euclidean. 
This fact makes these models more interesting since it has been shown that the surface 
of the  pores can be characterized with a fractal dimension (see Katz and Thompson 
(1985), Hansen and Skjeltorp (1988), Thompson et nI 1987). Furthermore, Oxaal et 
al in 1987 showed that for both, the DLA and the Eden models, fluid displacement in 
a medium depends very strongly on its fractality. 

The invasion per col at ion^ model represents a more realistic description of fluid 
displacement in a porous medium~than the Eden model, since~the medium is a pore 
structure, with pores of vastly varying sizes. The purpose of this work is to study the 
dependence of the fractal dimension that the invading tluid acquires on the geometry 
of the porous medium which we represent as a fractal network. In this paper we present 
some import& results of this study, where we have used the model of site invasion 
percolation to examine the dependence on average coordination number, l i n k s  structure 
and the dimension of the percolating backbone. 

Using invasion percolation, Paredes and Octavio (1990) found that the fractal 
dimension of the invading fluid (DJ tends to be the same as the fractal dimension of 
the porous medium (D~=1.89), when simulating invasion in a spanning cluster 
saturated with an infinitely compressible fluid, at the critical probability p.. The 
correspondence between the above two strnctures is straightforward in this case, which 
corresponds to invasion percolation without trapping. When the original fluid is 
infinitely incompressible (invasion percolation with trapping) Paredes .and Octavio 
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(1992a) found the following results: (i) Di= 1.37 when invading the spanning cluster 
at p.; (ii) Di = 1.82 when invading the spanning clusterp >> p.. In this case the geometric 
correspondence between the structure of the network and that of the invading fluid is 
not straightforward. Our objective is to find the dependence of Di on DI and to 
determine which are the relevant parameters that influence such a dependence. 

The invasion percolation model introduced by Wilkinson and Willemsen is used 
to describe immiscible bi-phasic fluid displacement into porous media, so that when 
injecting a fluid from one side of the network, it percolates to the opposite side, pushing 
out the original fluid of the medium. This model only takes into account the case 
where, the capillary number is much smaller than 1. That is, the capillary forces 
dominate viscous ones, so that the fluid displacement is due exclusively to capillary 
phenomena. In our work we consider only drainage, ,which means that the invading 
fluid is the non-wetting phase. In this model the invading fluid, in order to continue 
the invasion, will always choose the largest pore radius that the interface sees at a 
given instant, since, the fluid displacement takes place pore by pore. 

A fractal medium is conformed by dead-ends, links and blobs (Stanley 1977). The 
dead-ends are paths where there is no transport (fluid, current, etc). For invasion 
percolation with trapping we have that the dead-ends are always trapping zones since, 
when the interface is localized at the beginning of the zone, the invading fluid cannot 
continue penetrating it, because the original fluid in that region has no way out. This 
leads us to state that an invaded network with or without dead-ends are equivalent 
i.e. in both cases the invading fluid has exactly the same structure. We can then say 
that in some sense the invading fluid only depends on geometry of the network without 
dead-ends. The network without dead-ends is called the backbone, which is conformed 
by links and blobs. The links are those sites of the network that are singly connected, 
that is, when we take out a link from our medium, the connection between opposite 
sides is interrupted. The blobs are the multiply connected sites. When we subtract a 
site from the blob, there will always exist another option in the walking path. In a 
fractat, it is important to remember that the fractal dimension of the blobs (Db) tends 
to be the same as the fractal dimension of the backbone (&), since as the length 
tends to infinity the blobs clearly dominate over the links (Pike and Stanley 1981). We 
have studied the dependence of the fractal dimension of the invading cluster on the 
backbone and links, as well as on the average coordination number of first occupied 
neighbours z. 

We use regular fractal networks to represent porous media. The fractal networks 
are regular self-similar structures. The regular fractals employed in this work were 
constructed using the following procedure. The initial structure, k = 0, is a square of 
length L(0) with N(0)  occupied sites. In the following step or second generation, k = 1, 
each one of the occupied sites is substituted by the k=O structures but rotate3 by a 
preselected angle 0 E {0, f, T, 5.r) obtainingin this form a network of length L( 1) = L(O)* 
with N(1) = N(0)2  occupied sites. The procedure is continued with the same sequence 
of rotations, generating a fractal at the scale wished. Figure 1 shows a fractal generated 
as described previously taking 0 = 0 for all occupied sites. The fractal dimension of 
this object is determined by the relation, 

This definition of the fractal dimension could also be used to compute, for example, 
the fractal dimension of the links (D,) or the fractal dimension of the invading fluid 
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Figure 1. (a) ,The k=O initial rtmcture. The black sites identify the occupied sites. ( b )  
The k = 1 stmcture which represent the second scale of generation of the object that appear 
in ( a ) .  z=3.0 and Df=1.73, when k i m .  (e) The k = O  initial stmcture of an array with 
the same number of occupied sites of the array that appear in (a).  Notice that the occupied 
sites are distributed differently. ( d )  The k =  1 structure which represent the second scale 
of generation of the object that appear in (e) .  z = 3 . 2  and D,= 1.73, when k-m. 

(D,), introducing into the equation the number of links NI and the number of sites 
invaded Ni, respectively. For these cases the fractal dimension has the correct value 
when k tends to infinity. 

On the other hand, the average coordination number of the fractal network is 
defined by, 

XEy) z, 
z- lim z ( k )  = lim - 

k+m k-rm N ( k )  
. .  , 

where z, is the number of nearest neighbours of the occupied site i, and N ( k )  the total 
number of occupied sites, for the k structure. We calculate z ( k )  for several generations 
and then obtain the coordination number in the asymptotic limit when the difference 
of two consecutive values of z ( k )  is less than a given tolerance. 

We chose to work with regular fractals because the way of generating them allows 
control of their characteristic parameters, which is indispensable for a quantitative 
study. Furthermore, this allows forthe generation of networks in a variety of dimensions 
rather than the two dimensions which can be obtained in standard percolation, 1.89 
at p .  and 2 for p >>pc. 

In invasion percolation a random number between 0 and 1 is generated and is 
assigned to each site on the network making this number and the radius of the pore 
correspond directly. Then, when invasion percolation simulations are performed in 
these  networks invading clusters are generated. We used the box-counting method 
 feder er 1988) for measuring the different fractal dimensions. The simulations were 
carried out on SUN workstations. All networks used in the invasion were of size no 
less than 635 x 1270 and as large as 1296 x 2592. The different Di values to which we 
will refer later correspond to the average of at least 20 realizations camed out for each 
network. The reported error bars for the-averaged D’s correspond to the standard 
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deviation. The error bars are probably larger than the error bars reported because of 
the finite-size effects and systematic errors. 

In order to study the dependence of 0, with respect to the average coordination 
number z, we constructed fractals of the same dimensions with neither dead-ends nor 
links. We generated these networks considering arrays of the same length in the k = 0 
initial structure. Every k = 0 initial structure was occupied with the same number of 
sites; the occupied sites were differently distributed in each initial structure, in order 
to obtain networks with different z. In figure 1 we show two examples of the process 
mentioned above. In figure 2 we show a typical invasion process of our simulations. 
We show in figure 3, that for networks of different z, the invading fluid has the same 
fractal dimension, within the limits of the estimated error. Additionally, Di is always 
1.82, using the invasion percolation model on percolating clusters for p " p .  (Paredes 
and Octavio 1992a), despite the fact that the average coordination number z changes 
as a function of p.  From this, we have another confirmation that Di does not depend 
on the coordination number of the porous media. But D; cannot depend on z because 
the average coordination number is a parameter that describes the existing connectivity 
between the pores only at the smallest scales. This effect does not change the fractal 
dimension that the invading fluid acquires since the fractal dimension should character- 
ize the system at all scales. Wilkinson and Willemsen found that when invading two 
Euclidean networks, one triangular (z = 6) and the other square (z = 4), I); in the first 

Figure 2. Invading cluster in a 216 x216 network with fractal dimension Dbb= 1.73. White 
points indicate the network and black points the invading cluster. In this case z=3.2. 
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Figure 3. The fractal dimension of the invading cluster versus the average coordination 
number z. All the networks have the same fractal dimension Dbb=i.73 and do not have 
links. The fractal dimension of the i n v a h g  cluster is independent of the average coordina- 
tion number. The invasions were performed in~lattiee of sire 1296x2592. The different 
vaiuu of Di were the average of 20 simulatiohs. 

case was 1.88 kO.02 and in the second case Di was equal to 1.82 i 0.02. They attributed 
the difference between both values of Di to the fact that in the first case p .  is equal to 
OS927.. . , and in the second case p .  is equal to 0.5. If invasion percolation with 
trapping is used, it is known that for Euclidean network of bonds (where p .  = 0.5 and 
z = 6) and for Euclidean network of sites (pc= 0.5927.. . , and z = 4) Di is the same, 
within the estimated error (see Chandler et al 1982). 

In fluid transport the necks (the sub-set composed by connected links) always plays 
a decisive role on the transport. On the other hand, in invasion percolation with 
trapping, when the invading fluid penetrates one of the necks, the uninvaded zones 
leading up to that neck remain definitely entrapped. In our work we experiment with 
networks that contain both links and blobs. All the networks have the same fractal 
dimension of the backbone but different structure of links. We generated these networks 
establishing a rule of rotation in the second generation scale in the way mentioned 
above (see figure 4), so that no dead-ends appear that would make Of different from 
Dbb. Furthermore, the way we rotate the basis of the fractal in the second scale leads 
us to generate networks of different D,. When we made our simulations, we found 
that D; remains constant, within the estimated error. This fact can be clearly observed 
in figure 5. We conclude that Di does not depend upon the structure of links. The 
above result arises from the fact, that the links only affect the structure of the invading 
fluid at the larger scales present in the invaded blob prior to the invasion'of each link. 
All the remaining scales are not sensitive to the presence of links. On the other hand, 
0, will'never be smaller than D,, where D,,, is the fractal dimension of the minimum 
path that connects two arbitrary sites extremes on the backbone (Laidlaw et a1 1987). 
One finds that when the size tends to infinity, the fractal dimension of the sites that 
belongio the blobs contained in the minimum path, dominate over the fractal dimension 
of the links. This~confirms that Di, even in the extreme case, is completely dominated 
by the fractal dimension of the sites contained in the blobs of the network and not by 
the fractal dimension of the links (Pike and Stanley 1981). 
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Figure 4. ( a )  The k = O  initial structure. The blai iites identify the occupied sites. ( b )  
The k =  1 structure which represent the second scale of generation of the object that appear 
in (a). Dl=O.O and Dr= 1.68, when k + a  (e) The k =O initial structure of an array with 
the same number of occupied sites of the anay that appear in (a) .  Notice that the occupied 
sites are distributed differently. ( d )  The k=I structure which represent the second scale 
ofgenerationoftheobjeathdtappearin(e).D,=0.46andD,=1.73,when k+cc.In ( b )  
and (d), notice that we establish a rule of rotation starting on this second scale, so that 
no dead-ends, that would make Df different from D,, appear. 

Figure 5. The fractal dimension of the invading cluster versus the dimension of the links 
D,. All the networks have the same fractal dimension of the backbone, D,,= 1.68. The 
fractal dimension of the invading cluster is independent of the dimension of the links. The 
invasions were performed in lattice of size 625 x 1250. The different values of D, were the 
average of ?O simulations. 

The trivial case is when the network is formed only by the links. In this situation, 
it is easy to see that the minimum path is the network, and that the structure of the 
invading fluid is exactly the same as that of the network. 

Finally, we generated networks of different fractal dimensions of the backbone 
(Dbb), composed only by blobs, and we simulate invasions on each network. In 
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Figure 6. The fractal dimension of the invading cluster versus the .dimension o f  the 
backbone. The links+blobs point come from the fit of  the points in figure 5. The fractal 
dimension o f  the invading cluster depends on the fractal dimension of the backbone and 
this dependence is linear. The invasions performed in the networks composed only by 
blobs were of  size 1296x 2592.The different values o f  Di were the average of 100 simulations. 

figure 6, we note the sur&ising fact that Di varies 1inearly.with Dbb, within the estimated 
error, and the slope is approximately equal to one. Furthermore, we observe that the 
Di (=1.37) obtained from a ,percolating cluster (Or= 1.89 and Dbb = 1.61) falls on 
the same line. Additionally, if we fit the 'Di data from figure 5, that point also falls 
on the same line. The errors bars of Di corresponding to the networks of only blobs 
(shown in figure 6 )  are the errors that come about when the least squares fit is carried 
out in order to calculate the different values of 0,. 

Furtheunore, in figure 6 we show, as an example, two different supports with 
Dbb= 1.67 that give rise to different values of Dj. The difference between them could 
be the fractal dimension of the minimum path D,  (for the larger D, the value of D, 
is 1.05 and for the other point Dm is 1.00), difference which could be neglected for 
the other cases we studied. We suggest an extensive study of this possible dependence 
on other types of fractals; see Paredes and Octavio (1992b). 
; In conclusion, we have shown that for a variety of regular fractal networks, the 

only crucial parameter that determines the fractal dimension of the invading fluid in 
invasion percolation with trapping is the fractal dimension of the backbone of the 
medium. Furthermore, we showed a linear dependence between D, and Dbb:~ Addi- 
tionally, in this paper it was shown that the fractal dimension of the invading fluid 
neither depends on the average coordination number of the network, nor on the fractal 
dimension of the links. 
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